Multiobjective Optimization Using Modified Binary PSO for Reduction of Sidelobe Level of the Thinned Array Antenna


  • A. Gayatri
  • M. Surendra Kumar
  • A.M. Prasad



To design an efficient communication system, controlling the energy present in the side lobes of the far-field pattern is essential with a considered antenna array. This paper discussed one method for synthesizing a thin antenna array for optimizing three objectives simultaneously. They are several active elements, peak SLL and FNBW. All these objectives are in contrast in nature. This multi-objective technique furnishes appreciable flexibility for any specified application. A planar array antenna of 20X10 and 10X10 is synthesized using modified BPSO and in the position updating equation, a modified sigmoid function is used, including spread distance. Numerical results state that MBPSO performs well, and the array antenna of 20X10 with 54% filled aperture (108 elements) produces maximum PSLL and FNBW of -19.28dB and 280 in the remaining ∅ plane, respectively. The pattern representation in the far-field at three cutting planes with low PSLL’s of -20dB.Whereas 10X10 planar array antenna with 52% thinning percentage produces the best PSLL of -22.04 dB and -23.44 dB in ∅=00 & 900principal planes, respectively. The FNBW has observed in two planes is around 310. And also achieved a compromised solution of PSLL and FNBW of -19.28 dB and 270, respectively.